# Quantum Numbers

Home/Quantum Numbers
Quantum Numbers 2018-01-22T07:37:54+00:00

We use a series of specific numbers, called quantum numbers, to describe the location of an electron in an associated atom. Quantum numbers specify the properties of the atomic orbitals and the electrons in those orbitals. An electron in an atom or ion has four quantum numbers to describe its state.

Principal Quantum Number (n)
The principal quantum number, signified by (n), is the main energy level occupied by the electron. Energy levels are fixed distances from the nucleus of a given atom. They are described in whole number increments (e.g., 1, 2, 3, 4, 5, 6, …). At location n=1, an electron would be closest to the nucleus, while n=2 the electron would be farther, and n=3 farther yet. As we will see, the principal quantum number corresponds to the row number for an atom on the periodic table.

Angular Momentum Quantum Number (l)
The angular momentum quantum number, signified as (l), describes the general shape or region an electron occupies – its orbital shape. The value of l depends on the value of the principle quantum number n. The angular momentum quantum number can have positive values of zero to (n-1). If n=2, l could be either 0 or 1.

Magnetic Quantum Number (ml)
The magnetic quantum number, signified as (ml), describes the orbital orientation in space. Electrons can be situated in one of three planes in three dimensional space around a given nucleus (x,y, and z). For a given value of the angular momentum quantum number l, there can be (2l+1) values for ml.

Spin Quantum Number (ms)
The spin quantum number describes the spin for a given electron. An electron can have one of two associated spins, (+12) spin, or (-12) spin. An electron cannot have zero spin. We also represent spin with arrows ? or ?. A single orbital can hold a maximum of two electrons and each must have opposite spin.

Summary
Quantum numbers specify the arrangements of electrons in orbitals.
There are four quantum numbers that provide information about various aspects of electron behavior.

## Elaborative Interrogation and Self-Explanation

By | March 5th, 2018|Categories: Educational, Students|

We all struggle to learn the complex concept in the class and spend elongated hours searching for methods to help [...]

## Interleaved Practice

By | March 5th, 2018|Categories: Educational, Students|

Don’t be intimidated by the fancy name, Interleaved practice or learning means if you study a couple of things at [...]