Likelihood hypothesis is being connected in the arrangement of social, financial, business issues. Today the concept of probability has assumed greater importance and the mathematical theory of probability has become the basis for statistical applications in both social and decision-making research. Probability theory, in fact, is the foundation of statistical inferences.

Probability is the measure of the likelihood that an event will occur. See glossary of probability and statistics. Probability is quantified as a number between 0 and 1, where, loosely speaking, 0 indicates impossibility and 1 indicates certainty. The higher the probability of an event, the more likely it is that the event will occur. A simple example is the tossing of a fair (unbiased) coin. Since the coin is fair, the two outcomes (“heads” and “tails”) are both equally probable; the probability of “heads” equals the probability of “tails”; and since no other outcomes are possible, the probability of either “heads” or “tails” is 1/2 (which could also be written as 0.5 or 50%).

These concepts have been given an axiomatic mathematical formalization in probability theory, which is used widely in such areas of study as mathematics, statistics, finance, gambling, science (in particular physics), artificial intelligence/machine learning, computer science, game theory, and philosophy to, for example, draw inferences about the expected frequency of events. Probability theory is also used to describe the underlying mechanics and regularities of complex systems.

## Elaborative Interrogation and Self-Explanation

We all struggle to learn the complex concept in the class and spend elongated hours searching for methods to help [...]